
Gear.exe - Vision of Decentralized
Bridgeless Computing Extension to

Ethereum Network

Nikolay Volf, Andrei Panin

Version 0.1 | Feb 2025

Overview of Gear.exe

Gear.exe is a groundbreaking decentralized compute network designed to significantly enhance
the computational capabilities of Layer-1 blockchain networks, starting with Ethereum. Unlike
conventional Layer-2 solutions, Gear.exe introduces a transformative approach to decentralized
applications (dApps) architecture. It provides a real-time, high-performance, parallel execution
environment with near-zero gas fees, instant finalization, and seamless integration with
Ethereum’s existing infrastructure and tools, such as MetaMask and Etherscan.

The mission of Gear.exe is to enable developers to build scalable, efficient, feature rich and
user-friendly dApps. As a real-time co-processor working alongside Ethereum, Gear.exe
enhances computational power without causing fragmentation or requiring asset bridges. By
maintaining Ethereum’s robust security and liquidity, it empowers developers to create
applications with Web2-level user experiences while utilizing the unique advantages of
blockchain technology.

Each program in Gear.exe can be considered its own individual rollup. Collectively, the
programs running on Executor nodes form a “swarm of rollups.” This architecture allows
Gear.exe to deliver unparalleled flexibility and scalability, giving developers the tools they need
to implement resource-intensive logic without sacrificing performance.

For developers, the process begins with identifying the computationally intensive parts of their
application’s business logic. These tasks are extracted from Solidity-based smart contracts and
reimplemented as =WebAassembly (WASM) programs on Gear.exe. Developers can then call
these programs as needed, radically reducing the cost and complexity of their operations.

This approach is particularly appealing for existing applications burdened by high gas fees, as
well as for projects that have been delayed to be developed on Ethereum or abandoned due to
economic constraints or performance limitations that negatively affect the user experience.

Gear.exe: Revolutionizing Ethereum

Why Ethereum Needs Gear.exe

Ethereum remains the dominant blockchain for decentralized application development, but it
faces significant challenges that hinder its scalability and usability. The network’s inability to
process transactions in parallel, its slow finality times, and its high gas fees are critical barriers
for developers and end users alike. These limitations are especially pronounced in high-
demand sectors such as DeFi, gaming, and enterprise applications, where responsiveness and
affordability are crucial to user adoption.

The root of these challenges lies in Ethereum’s single-threaded architecture. The lack of parallel
processing limits the network’s computational throughput, making it difficult to handle complex
or resource-intensive operations. Block confirmation time about 12 seconds introduces sensitive
delays to user interactions. Finality times, averaging around 13 minutes, intensify the problem.
While transactions in a block are usable after one block confirmation, applications requiring high
security typically wait for finalization to ensure immutability. High gas fees (i.e expensive
computations) further deter adoption, particularly for applications that require frequent or
intensive computations.

Ethereum Layer-1 Network: Basic Workflow

Layer-2 solutions such as Optimistic Rollups, ZK Rollups, and Based Rollups have attempted to
address these issues by offloading transaction processing from the Ethereum main chain.
However, while they improve scalability, they introduce trade-offs that limit their effectiveness in
certain scenarios.

Optimistic Rollups rely on a lengthy challenge period for security, delaying transaction
finalization from a few hours to several days, depending on the specific rollup implementation.

ZK Rollups, while faster, impose significant computational overhead due to the resource-
intensive nature of proof generation that includes a combination of complex cryptographic
operations, large circuit sizes, and the need for rigorous guarantees of correctness and privacy.

Both approaches often operate in isolated environments, fragmenting liquidity and complicating
interoperability.

Interaction of L2 Networks with Ethereum L1: Basic Workflow

In 2023, Based rollups were proposed as an alternative, leveraging Ethereum’s Layer-1
protocols for sequencing and decentralization. While these rollups reduce reliance on token-
based mechanisms and simplify certain operations, they inherit scalability limitations due to
shared transaction sequencing and data availability constraints. They sacrifice transaction
flexibility needed for custom transaction sequencing, which can hinder their effectiveness for
certain specialized use cases.

So What?

Gear.exe presents a fundamentally different approach by functioning as a decentralized
compute network fully integrated with Ethereum. Unlike rollups, where smart contracts are
deployed separately on Layer-2 chains, Gear.exe keeps all operations native to Ethereum. This
design allows programs running on Gear.exe to interact seamlessly with Ethereum’s existing
smart contracts, eliminating the need for asset bridging and avoiding liquidity fragmentation.
Developers can utilize Ethereum’s robust ecosystem without the additional complexity
introduced by traditional Layer-2 solutions.

Another critical advantage of Gear.exe lies in its memory capacity. With up to 2GB of memory
allocated per program, Gear.exe enables developers to execute resource-heavy computations
that are impractical on Ethereum or Layer-2 rollups. For comparison, Ethereum and Optimistic
Rollups are constrained by gas limits, which indirectly restrict memory usage to a fraction of
what Gear.exe provides. Similarly, ZK Rollups, while efficient in compressing data for on-chain
validation, impose strict limitations on memory to prioritize proof generation efficiency.

Gear.exe’s expanded memory allocation opens the door for advanced use cases such as Monte
Carlo simulations, AI model training, and real-time data analysis.

The multi-threaded execution engine further sets Gear.exe apart. Ethereum and most rollups
process transactions sequentially, limiting throughput and creating bottlenecks in high-demand
scenarios. In contrast, Gear.exe supports parallel execution, allowing multiple computations to
run simultaneously. This innovation is particularly beneficial for latency-sensitive applications,
including high-frequency trading platforms, gaming environments, supply chain monitoring
systems and more.

Cost efficiency is another defining feature of Gear.exe. By offloading intensive computations to
its decentralized network, Gear.exe reduces the costs associated with executing complex logic.
Additionally, it introduces a reverse gas model, where developers can cover transaction fees for
users. This approach provides a frictionless experience similar to Web2 applications, enabling
developers to design user-friendly dApps that prioritize accessibility and adoption.

Gear.exe also enhances user and developer experience by allowing off-chain transactions with
pre-confirmations. Unlike Layer-2 solutions that often delay finality due to challenge periods or
proof generation, Gear.exe delivers immediate computation results before they are finalized
on Ethereum. This capability ensures real-time responsiveness while maintaining the security
guarantees of blockchain-based systems.

The use of Rust as the primary programming language for Gear.exe programs further
differentiates it from traditional Ethereum development. Rust is a widely used, general-purpose
language known for its performance and safety, offering a robust ecosystem that is accessible
to a broad range of developers. In contrast, Solidity, Ethereum’s native language, is blockchain-
specific and requires a steeper learning curve. By leveraging Rust, Gear.exe simplifies the
development process while enabling the creation of more powerful and maintainable
applications.

In summary, Gear.exe addresses Ethereum’s limitations and surpasses the capabilities of
Layer-2 solutions by offering seamless Ethereum integration, expanded memory capacity,
parallel execution, cost-efficient processing, and developer-friendly tools. By bridging the gap
between Ethereum’s security and the performance demands of modern applications, Gear.exe
is paving the way for the next generation of decentralized applications across industries such as
finance, gaming, AI tools, math modeling, supply chain management and many more.

Key Features and Advantages

Gear.exe offers a suite of features that address the scalability and usability challenges faced by
existing blockchain solutions. These features are designed to empower developers and

enhance the user experience, making Gear.exe a powerful tool for modern dApp development.

Seamless Integration with Ethereum

Gear.exe network is fully integrated with Ethereum and operates directly with native Ethereum’s
smart contracts. This compatibility ensures that developers can adopt Gear.exe without needing
additional tokens, interfaces, or complex configurations. Users and developers can keep using
Ethereum’s existing tools and infrastructure they are familiar with for developing and interacting
with Solidity-based smart contracts, including MetaMask, Etherscan, popular developer
frameworks, environments, debugging tools, IDEs (Thirdweb, Tenderly, The Graph etc).

Parallel Execution

Gear.exe’s architecture inherently supports parallel execution of programs, leveraging multiple
CPUs to handle computational workloads efficiently. This capability allows developers to
distribute tasks across several threads, enabling faster processing for applications like AI
models, financial simulations, and complex gaming logic. By optimizing workloads for parallel
execution, Gear.exe significantly boosts throughput and reduces bottlenecks, ensuring that
even the most demanding applications can operate seamlessly.

A dApp developer can offload the heavy logic of their application to a separate program on
Gear.exe and, if the program logic supports it, further parallelize these computations across
multiple threads by running them on several programs simultaneously.

Advanced Programming Environment

Gear.exe provides developers with a cutting-edge programming environment by combining the
power of WebAssembly (Wasm) with the flexibility of Rust, a widely adopted and developer-
friendly language. Wasm programs on Gear.exe enable high-performance, lightweight
execution, while Rust’s rich ecosystem and safety features make it easier to write, test, and
maintain complex applications. Additionally, Gear.exe supports up to 2GB of memory per
program, significantly exceeding the constraints of Ethereum and Layer-2 rollups. This
combination empowers developers to create larger, more sophisticated applications, such as
financial simulations, AI models, and real-time gaming systems, without being hindered by
traditional blockchain limitations.

Reverse Gas Model and Flexible Gas Management

Besides the fact that Gear.exe minimizes the costs associated with decentralized computation
by offloading resource-intensive tasks to its network, it also introduces a Reverse Gas model,
shifting the cost of execution from users to the program itself. This approach ensures a
seamless and accessible user experience, enabling broader adoption of decentralized
applications (dApps).

Gas Fees and Reverse Gas Model

In Gear.exe, programs maintain two types of balances:

Executable Balance: Dedicated solely to program execution. If this balance is
depleted, the program cannot process new messages until replenished.
Free Balance: Acts as a general-purpose wallet for funds earned by the program,
which can be withdrawn or converted into Executable Balance if supported by the
program logic.

This model allows anyone to send messages to a program without incurring additional
computational costs beyond the standard Ethereum transaction fee. The Executable Balance is
consumed during execution, while funds are distributed to the network’s Executors as rewards.
Developers can design applications that fund their Executable Balance through revenue models
like user payments, fees, or even sponsorships.

The reverse gas model enhances accessibility and usability, eliminating user-side complexity
while promoting scalability and efficiency for dApp creators. This makes Gear.exe particularly
suited for applications that prioritize user adoption and real-time responsiveness, such as
financial services, gaming platforms, and enterprise solutions.

Real-Time Computation Result and Pre-confirmations

For latency-sensitive applications, Gear.exe introduces its own technical implementation of a
well-known pre-confirmation mechanism. This feature allows developers to access computation
results immediately after execution, even before the transaction is finalized on-chain. By
bridging the gap between decentralized security and Web2-like responsiveness, this capability
enables the development of cutting-edge applications in finance, competitive gaming, and other
industries.

No Own Blocks

Unlike traditional Layer 2 solutions such as Arbitrum and Optimism, which generate and store
their own blocks, Gear.exe does not create blocks. Instead, it processes transactions and
program state changes directly within its network, leveraging its decentralized compute
architecture. By avoiding block creation, Gear.exe eliminates the overhead associated with
block production and consensus mechanisms, reduces latency, and enables real-time
computation. This design enhances scalability and allows for more efficient resource utilization,
making it ideal for applications requiring instant feedback and high computational throughput.

Core Components

Gear.exe redefines decentralized computation by operating as a P2P compute network rather
than a standalone blockchain. It eliminates the need to produce its own blocks or maintain a
shared state, focusing solely on efficient and reliable off-chain computation. Gear.exe relies on
several key components that enable its interaction with the Ethereum ecosystem and execution
of WASM-based programs. These components work together to provide a seamless, scalable,
and efficient computational layer.

Gear Programs

Gear.exe programs are developed as WASM modules using the Gear Protocol framework,
similar to Vara programs.These programs enable developers to implement arbitrary logic
tailored to their applications.

Initially, programs are uploaded to Ethereum as blobs — a form of data stored outside
Ethereum’s main state but accessible through archive nodes. This mechanism ensures that
large datasets can be efficiently stored without burdening the Ethereum network’s main state.
Each Gear program can allocate up to 2GB memory, allowing for the execution of highly
complex computations, a capacity that far exceeds the stricter memory constraints of Ethereum,

https://gear-tech.io/
https://vara.network/

Optimistic Rollups, Based Rollups, and ZK Rollups, which are limited by gas and computational
efficiency considerations. Once uploaded and verified, the program becomes available for
execution within the Gear.exe network.

The process for uploading a program involves the following steps:

1. Blob Submission: A dApp developer first submits the Wasm code as a blob to
Ethereum. This generates a code_id, a unique hash that identifies the program
throughout its lifecycle.

2. Router Contract Notification: After generating the code_id, the developer calls the
UploadCode operation in the Router Contract. This informs the Gear.exe network of
the program’s existence. (see more in “Router Contract” section below)

3. Event Emission: The Router Contract emits an event, prompting Gear.exe nodes to
retrieve the blob from Ethereum’s archive nodes.

4. Verification: Executor nodes validate the blob to ensure it adheres to Gear Protocol’s
standards and qualifies as a Gear program.

5. Approval and Registration: Once verified, the program is approved and registered
within the Gear.exe network. Executor nodes store the WASM code ready for future
executions.

This rigorous process ensures the security and integrity of all Gear programs. The one-time
upload and registration mechanism simplifies the workflow for developers, enabling seamless
program reuse across multiple dApp interactions.

Router Contract

The Router Contract, written in Solidity, serves as the primary interface between Ethereum and
Gear.exe. This contract plays a pivotal role in bridging off-chain computations with Ethereum’s
on-chain infrastructure. Written in Solidity, the Router Contract ensures seamless coordination
across the network. Key functions of the Router Contract include:

Program Management: Developers can upload and manage WASM programs for
execution within Gear.exe.
Result Handling: The Router Contract receives execution outcomes from the
Gear.exe Sequencer and updates the state transitions for associated Mirror Contracts.
(see more in “Mirror Contract” below)
Public Key Storage: The contract maintains public keys for all Executor nodes in the
Gear.exe network, ensuring secure communication and authentication.

The Router Contract is a central component, deployed once for the entire Gear.exe ecosystem,
ensuring a single coordination point within Ethereum.

Mirror Contract

For every uploaded Gear program, a corresponding Mirror Contract is automatically deployed
on Ethereum. This contract acts as the primary interface between the on-chain and off-chain
environments, enabling smooth interaction between Gear.exe and Ethereum-based
components. The deployment of Mirror Contracts for each Gear program ensures modularity
and scalability. Mirror Contracts handle three primary tasks:

Initiating Requests: They emit events that trigger the execution of WASM programs
within the Gear.exe network.
Receiving Results: Mirror Contracts receive execution results from the Router
Contract and relay them to other Ethereum-based smart contracts or dApps.
Enhanced Readability: When paired with Decoder Contracts, they can translate
execution results into human-readable formats compatible with tools like Etherscan.

Decoder Contract (Optional)

Decoder Contracts are optional but highly useful for developers who require additional
functionality in interpreting program messages. These contracts encode and decode data,
making the interaction between Gear programs and Ethereum-based tools more accessible.

Encoding: Converts input payloads into the SCALE Codec format, enabling Gear
programs to process data efficiently.
Decoding: Translates output data from Wasm programs into Ethereum’s ABI format,
making the results readable and actionable within Ethereum’s ecosystem. While
Decoder Contracts add a layer of convenience, they also incur additional gas costs.
Developers must weigh the trade-offs between usability and cost-efficiency when
deciding whether to implement them.

Executors

Executors are the backbone of the Gear.exe network, functioning as decentralized nodes that
execute Wasm programs. These nodes ensure the seamless operation of Gear.exe by
maintaining redundancy, decentralization, and real-time computational capabilities. Unlike
traditional blockchain nodes, Executors operate without a shared storage root, focusing entirely
on program execution and result validation. The responsibilities of Executors include:

Event Detection: Executors monitor events emitted by Router and Mirror Contracts on
Ethereum. These events signal the need to retrieve and execute specific Wasm
programs stored in the Gear.exe network.

Program Execution: Upon detecting a valid event, Executors fetch the corresponding
program, execute its logic, and produce results. These computations leverage Gear
Protocol’s Wasm runtime, ensuring high performance and flexibility.
Result Validation: After executing the program, Executors sign the results to confirm
their validity. The signed results are then forwarded to the Sequencer for aggregation.
Decentralized Coordination: Executors communicate through a peer-to-peer (P2P)
network, ensuring fault tolerance and redundancy across the Gear.exe ecosystem.

Executors are selected through Symbiotic Protocol’s restaking mechanism, which aligns
economic incentives with performance and reliability. Misbehavior, such as producing
inaccurate results, is deterred by a robust slashing mechanism that reduces the offending
Executor’s stake. This economic accountability ensures that the network remains secure and
trustworthy.

Sequencer

The Sequencer plays a critical role in the Gear.exe network by aggregating execution results
and ensuring their synchronization with Ethereum’s blockchain. While Executors handle
program execution, the Sequencer ensures that the results are efficiently batched and
submitted to Ethereum.

Key functions of the Sequencer include:

Result Aggregation: The Sequencer collects signed outputs and their corresponding
state root hashes from multiple Executors. This aggregation process minimizes the
data submitted to Ethereum, reducing transaction costs.
Batch Submission: After collecting the results, the Sequencer compiles them into a
batch transaction and sends them to the Router Contract on Ethereum.
Fee Coverage: The Sequencer covers the Ethereum transaction fees associated with
submitting batch results.

The Sequencer does not need to be part of the Gear.exe node network. Any machine can act
as a Sequencer. By separating execution and aggregation roles, Gear.exe optimizes its
computational workflow while maintaining scalability and security.

Integration of Ethereum dApps with Gear.exe

Methods

Gear.exe offers two distinct methods for integrating Ethereum dApps, allowing developers to
choose the approach that best suits their application's requirements.

The first method, Event-Based Integration, relies on Ethereum smart contracts emitting events
to request off-chain computations. These events are detected by Executors within the Gear.exe
network, triggering the execution of the specified Wasm program. Once the computation is
complete, the results are sent back to Ethereum through the Mirror Contract. This approach
ensures a decentralized interaction between Ethereum and Gear.exe, maintaining the security
and integrity of the process.

The second method, Native Integration, allows dApps to directly interact with their Gear
programs via Remote Procedure Call (RPC). Unlike the event-based approach, native
integration bypasses the need for Ethereum events, enabling real-time interactions with the
Gear.exe network. This method is particularly advantageous for applications that require
immediate results, as it leverages Gear.exe's pre-confirmation mechanism to provide outputs
instantly.

Both integration methods are designed to be developer-friendly and scalable, ensuring that
dApps can seamlessly incorporate Gear.exe's computational power without compromising
security or performance.

This diagram illustrates native integration of an Ethereum-based dApp with Gear.exe

Brief Workflow for dApp Developers

1. Define the Computationally Intensive Part. Identify the resource-heavy segment of
your dApp's business logic and rewrite it in Rust using Gear Protocol's Sails library.
Compile the program into a Wasm module and generate an IDL (Interface Definition
Language) file to describe its interface.

2. Upload Your Wasm and IDL Files to Ethereum. Publish your Wasm code and IDL
file to the Ethereum network as part of a transaction. The code is stored as a blob, a
data format accessible via Ethereum's archive nodes but stored outside the main state.
This step prepares your program for integration with the Gear.exe network.

3. Initialize Your Program in Gear.exe. With a single action, activate your Wasm
program on Gear.exe. This initialization process uploads the code to Gear.exe,
establishes the program's initial state, and automatically deploys a corresponding
Mirror Contract on Ethereum. The Mirror Contract serves as an interface, representing
your dApp within the Ethereum ecosystem and facilitating seamless interaction
between the two environments.

4. Leverage Lightning-Fast Computation. Interact with your program by submitting
messages through Ethereum, paying only the transaction fee for message submission.
Alternatively, use the RPC interface to access your dApp's functionality directly without
incurring additional costs.

5. Finalization and Real-Time Availability. Once your transaction is included in an
Ethereum block, the computation is finalized and made available according to
Ethereum's native finality mechanism. However, Gear.exe's pre-confirmation
mechanism allows your dApp to utilize the results of computations instantly, even
before the transaction is finalized on-chain. This feature ensures a near-instantaneous
response time, bridging the gap between blockchain finality and real-time interaction.

Uploading programs and interacting with them is quite simple thanks to the developer-friendly
tools provided by Gear.exe. Through the Gear IDEA, anyone can easily integrate their
Ethereum application with efficient computations on Gear.exe, upload a program, read its state,
send a message, and much more.

Security and Executor Selection

Regardless of the integration approach, Executors are critical to Gear.exe’s operation. Their
selection and management are governed by a decentralized re-staking mechanism facilitated
by the Symbiotic Protocol. This process ensures that Gear.exe maintains a secure and scalable
compute network by dynamically managing the set of Executors responsible for program
execution.

Symbiotic Protocol provides the infrastructure for this election process, serving as an exchange
hub for three primary stakeholders: stakers, operators, and the Gear.exe network itself.

https://idea.gear-tech.io/

Together, these actors create a robust and decentralized Executor selection mechanism tailored
specifically to Gear.exe’s requirements.

Executor Selection Workflow

Gear.exe configures the operator set, establishing parameters such as staking limits and the
maximum allowable stake for individual operators. Operators, who run Executor nodes, are
elected based on their ability to attract stakers who delegate collateral (e.g., ERC-20 wrapped
VARA tokens) to them. This delegated stake determines their eligibility to serve as active
Executors. The list of active Executors is continuously updated and pushed to the Router
Contract, which governs Gear.exe’s decentralized compute infrastructure.

Key elements of the selection process include:

1. Stake Allocation: Gear.exe establishes operator sets, defines staking requirements,
and locks stake amounts for predefined epochs to maintain network stability.

2. Symbiotic Vault Integration: Vaults manage the staking process, allocate collateral to
operators, and enforce strategies specific to Gear.exe’s execution needs.

Key Actors in Gear.exe Executor Selection

Gear.exe Network: Defines the decentralized infrastructure required to execute
programs, configures operator sets, and establishes staking parameters. Gear.exe
also ensures that stakers and operators are appropriately rewarded for their
contributions.
Stakers: Provide economic security by delegating collateral to operators. In return,
they receive a share of the rewards distributed by Gear.exe.
Operators: Operate Executor nodes to execute programs on Gear.exe. They benefit
from Symbiotic Protocol’s ability to pool stakes across multiple stakers, enabling
efficient security for Gear.exe without requiring isolated infrastructure for each staker.
Vaults: Act as intermediaries in the staking process, handling deposits, withdrawals,
and slashing events. Vaults also distribute staking rewards based on performance and
provide historical data for external reward contracts.

Rewards and Incentives

Gear.exe ensures that stakers and operators are properly incentivized for their roles within the
network. Rewards are calculated off-chain by Gear.exe, which generates a Merkle tree structure
to facilitate secure and transparent claims by participants. The rewards are divided into:

Operator Rewards: For maintaining and running Executor nodes.

Staker Rewards: For providing the collateral that secures Gear.exe’s operations.

This flexible reward logic allows Gear.exe to adapt its incentive structure as needed, ensuring
long-term sustainability.

Slashing and Misbehavior

Symbiotic incorporates a robust slashing mechanism to deter malicious behavior. If an Executor
produces inaccurate results or engages in misconduct, the Gear.exe network can initiate a
slashing request to Symbiotic. Symbiotic’s Slasher module validates these requests and
enforces penalties by reducing the stake of the offending operator. This ensures economic
accountability and strengthens the overall integrity of the network.

Attracting Executors

Running a Gear.exe node is designed to be mutually beneficial for operators and stakers. With
the added appeal of rewards and the flexibility provided by Symbiotic’s Vault and staking
mechanisms, many Vara validators are expected to run their own Gear.exe nodes, further
bolstering the network’s security and scalability.

Economic Model

Gear.exe’s economic model is built to support scalable, efficient, and sustainable decentralized
applications (dApps). It introduces mechanisms like the reverse gas model and a dual-
balance system, enabling programs to operate seamlessly while maintaining cost transparency
and flexibility.

Fundamental Aspects

Reverse Gas Model

Gear.exe uses a reverse gas model, where the cost of executing a program is deducted from
the program’s Executable Balance instead of being paid by the user. This means users only
pay the Ethereum transaction fee (in ETH) for sending messages to Mirror Contracts, while the
computational costs of Gear program execution are covered by the program itself. This
approach simplifies interactions for users and makes programs more accessible.

Dual-Balance System

Programs in Gear.exe maintain two types of balances:

Executable Balance: Dedicated to execution costs. If this balance is zero, the
program cannot process messages.
Free Balance: Serves as a wallet for funds earned or deposited into the program.
These funds can be withdrawn by the program creator or converted into Executable
Balance if the program’s logic permits.

Funding Mechanisms

Programs in Gear.exe maintain their Executable Balance through multiple methods:

Developer or Sponsor Funding: The program creator or external sponsors can
directly top up the Executable Balance via Ethereum transactions, ensuring the
program remains operational without requiring user contributions.
Revenue-Based Replenishment: Programs can replenish their Executable Balance
using revenue generated through operational activities, such as fees, commissions, or
trading spreads.
User-Driven Contributions: Programs may be designed to accept small payments
(value) from users as part of their interactions. A portion of these payments can be
converted into Executable Balance, creating a self-sustaining model for the program.

Executor Rewards

When a program executes, the consumed portion of its Executable Balance is locked in the
Router Contract. These funds are later distributed to Executors, incentivizing them to process
computations and maintain the network’s reliability.

Transparency and Tracking

Developers and users can query the current Executable Balance of a program via RPC calls
using the program’s state hash. Mirror Contracts on Ethereum expose this state hash, allowing
anyone to verify a program’s resource usage.

Economic Patterns

Developers can design their programs to follow various economic patterns based on their
application’s goals and revenue model:

Patron Model: The program creator funds the Executable Balance, allowing users to
interact with the program for free.

Revenue-Supported Model: The program generates income (e.g., through fees or
commissions) and uses part of this revenue to replenish its Executable Balance.
User-Paid Execution: Users include a small value with their messages, which is
converted into Executable Balance, enabling the program to fund itself through user
interactions.

Advantages of the Model

Clear Cost Allocation: Users pay only for sending Ethereum transactions, while
programs handle computational costs. This distinction simplifies budgeting and
encourages dApp adoption.
Adaptability: Developers can implement various funding strategies, tailoring the
economic structure to the specific needs of their application.
Resource Optimization: The reverse gas model ensures efficient use of program
funds, with balances directly linked to execution and general-purpose needs.
Network Incentives: Executors are rewarded for computation, promoting a robust and
secure decentralized execution environment.

Use Cases and Target Audience

The versatility of Gear.exe makes it ideal for a wide range of applications across various
industries. Its computational power, scalability, and user-friendly design open up new
possibilities for developers and enterprises alike.

In the financial sector, Gear.exe will transform DeFi platforms by enabling faster and more cost-
effective execution of complex financial operations. Decentralized exchanges, for example, can
benefit from near-instant trade finalization and reduced fees, enhancing their appeal to traders
and liquidity providers.

The gaming industry is another area where Gear.exe shines. Gaming platforms can deliver real-
time interactions and seamless gameplay. This capability is particularly valuable for multiplayer
environments and strategy games that require low-latency processing. Most current Web3
games focus primarily on the marketplace side of gaming, such as NFTs and trading, whereas
Gear.exe is designed to enable seamless in-game play, real-time transactions, and mass
usage. By addressing the computational demands of modern gaming, Gear.exe paves the way
for immersive and scalable Web3 gaming experiences.

Gear.exe also plays a pivotal role in artificial intelligence and machine learning applications.
Developers can use its parallel execution capabilities to train and deploy AI models efficiently,
leveraging the network’s computational power without incurring excessive costs.

In supply chain management, Gear.exe can process large datasets generated by IoT devices
off-chain, such as temperature readings or GPS coordinates, and sends only the most relevant
insights on-chain. This approach will reduce costs while maintaining the transparency and
security of blockchain technology.

Automated Risk Management for DeFi Protocols

Effective risk management is a critical component for decentralized finance (DeFi) protocols.
These systems often rely on third-party risk assessment providers to deliver updated risk
scores, which must be reflected on-chain to inform portfolio adjustments and other decisions.
Traditionally, automating this process requires centralized off-chain components or oracle
systems, introducing inefficiencies and potential points of failure.

Gear.exe offers a decentralized solution by enabling direct integration with third-party risk
services. Using its high-performance computational environment, risk providers can seamlessly
process and transmit updated scores or optimized portfolio recommendations directly to
Ethereum. This integration eliminates the need for intermediaries and enhances the speed and
reliability of risk management workflows.

For instance, a hedge fund operating on a DeFi platform could leverage Gear.exe to receive
real-time risk updates. The platform automatically processes these updates and executes on-
chain adjustments, such as portfolio rebalancing, without requiring additional manual
intervention. This approach not only streamlines operations but also enhances the
responsiveness and security of the entire risk management process.

Off-Chain Financial Simulations

Large-scale financial simulations, such as Monte Carlo simulations or portfolio optimizations,
are essential tools for analyzing risk and making informed decisions in decentralized finance
(DeFi). Monte Carlo simulations involve running thousands or even millions of randomized
scenarios to model potential outcomes and assess the probability of different events occurring.
For example, they are widely used to forecast portfolio performance under varying market
conditions, helping to quantify risk and identify optimal strategies for investment.

However, executing these computations directly on Ethereum is both costly and time-
consuming due to high gas fees and the network’s limited computational capacity. While Layer-
2 solutions like Optimistic Rollups and ZK Rollups aim to reduce costs and increase scalability,
they still inherit constraints from Ethereum. Optimistic Rollups rely on fraud proofs and extended
challenge periods, which delay finality for DeFi applications requiring real-time responses. ZK
Rollups, on the other hand, involve computationally expensive proof generation processes,
making them less efficient for running large-scale simulations or real-time optimizations.

By contrast, Gear.exe offloads these intensive computations entirely off-chain, allowing DeFi
platforms to process simulations or optimizations efficiently while maintaining seamless
integration with Ethereum for critical on-chain actions. Once the computations are complete,
results such as updated risk scores or optimized portfolio configurations are seamlessly
transmitted back to Ethereum. These results can then inform on-chain actions, such as portfolio
adjustments, in real time.

For instance, a hedge fund operating on a DeFi platform could use Gear.exe to continuously run
advanced risk assessment algorithms. The outputs from these simulations are used to
automatically rebalance portfolios on-chain, ensuring optimal performance and minimizing risk
exposure. This approach improves the speed and cost of financial decision-making in DeFi
environments.

Supply Chain & IoT Data Processing

In supply chain management, real-time data from Internet of Things (IoT) devices plays a
crucial role in maintaining efficiency and ensuring quality control. For example, sensors may
continuously monitor conditions such as temperature, location, or humidity for shipments.
However, processing and storing this vast amount of data directly on-chain is neither cost-
effective nor feasible due to the constraints of blockchain scalability and high transaction costs.

Metrics such as temperature thresholds, location tracking, or anomaly detection can be
computed within the Gear.exe network, significantly reducing the computational load on the
blockchain. Only critical results or actionable alerts are then transmitted on-chain, ensuring cost
efficiency and data relevance.

A logistics company managing temperature-controlled shipments can integrate Gear.exe into its
supply chain monitoring system. IoT sensor data is processed off-chain, and if a shipment
exceeds a predefined temperature threshold, Gear.exe triggers an on-chain event. This event
may alert stakeholders or initiate predefined actions, such as rerouting the shipment or
adjusting storage conditions.

Off-Chain Voting System

Large-scale decentralized autonomous organizations (DAOs) face significant challenges when
implementing on-chain voting systems. The high gas costs associated with processing votes,
especially for mechanisms like weighted or quadratic voting, can make the process prohibitively
expensive. Additionally, the public nature of on-chain voting compromises member privacy, and
as the number of participants grows, scalability becomes a major obstacle.

Gear.exe can offer an efficient alternative by enabling DAOs to process votes off-chain while
retaining the integrity and trust required for decentralized governance. Voting logic can be
executed within Gear.exe’s. Only the final tally and essential results are submitted on-chain,
significantly reducing costs and computational overhead.

For example, a DAO with 10,000 members can integrate Gear.exe into its governance
framework. Members sign their votes off-chain, ensuring privacy and minimizing gas fees. The
Gear program tallies the votes securely and submits the aggregated result to the blockchain.

Future Improvements

One of the most anticipated advancements of Gear.exe’s development is the integration of
multi-network support. While currently optimized for Ethereum, Gear.exe’s design makes it
capable to operate across other Layer-1 ecosystems, such as Solana, Near, BNB etc. This
multi-chain compatibility could allow developers to leverage Gear.exe’s features across a
broader range of blockchain environments, fostering greater interoperability and innovation.

Additionally, Gear.exe may incorporate zk-SNARKs to enhance privacy and security. These
zero-knowledge proof technologies enable computations to be verified without revealing
underlying data, making them ideal for applications requiring confidentiality. As zk-SNARKs
become more practical and scalable, their integration into Gear.exe will further solidify its
position as a leader in decentralized computation.

Continuous optimization is another key focus. Regular updates to the platform will enhance
computational efficiency, reduce latency, and improve the developer experience, ensuring that
Gear.exe remains at the forefront of blockchain innovation.

Summary

Gear.exe represents a paradigm shift in decentralized computation. By addressing Ethereum’s
scalability and cost limitations, it empowers developers to build dApps that deliver unmatched
performance and user experience. Its parallel execution capabilities, near-zero gas fees, and
seamless integration make it a transformative solution for industries ranging from finance and
gaming to supply chain management and artificial intelligence.

As Gear.exe continues to evolve, its focus on multi-network compatibility and cutting-edge
technologies will enable it to redefine the possibilities of blockchain development. Developers
and users alike are invited to join the Gear community to explore the full potential of this
revolutionary platform.

Gear.exe is under active development and is being continually improved each day, with regular
commits to the public repository.

Would you like to become part of the Gear community and learn more about Gear.exe? Make
sure to join the Gear x Vara Discord or Telegram! Or send an email at hello@gear-tech.io.

Glossary

Actor Model

A computational model where individual components, called actors, operate independently and
communicate with each other through messages. This approach enables parallel processing
and high scalability, which are integral to Gear.exe’s architecture.

Archive Node

An Ethereum node that stores the complete history of the blockchain, including all past states
and transactions. Unlike full nodes, which only maintain the current state and recent transaction
data, archive nodes retain historical data that allows developers and applications to access
detailed information about any block or state from the chain’s entire history. Archive nodes are
essential for tasks like querying historical balances, accessing older smart contract states, or
retrieving blobs uploaded for off-chain processing, as utilized by Gear.exe.

Based Rollups

A type of Layer-2 scaling solution that relies directly on Layer-1 protocols for sequencing and
data availability. Unlike traditional rollups that use dedicated infrastructure, based rollups
integrate deeply with the underlying blockchain, leveraging its decentralization and security
guarantees. This alignment with Layer-1 simplifies operations by removing the need for native
tokens or separate trust assumptions. While based rollups benefit from Ethereum’s censorship
resistance and robust consensus, they inherit its limitations, such as slower transaction finality
and shared scalability constraints. Additionally, transaction flexibility is often reduced because
sequencing and execution must conform to Layer-1 rules.

Blob

A large binary object stored on the Ethereum network as part of a transaction. In Gear.exe,
Wasm code is uploaded as a blob, which resides outside Ethereum’s main state but is

https://github.com/gear-tech/gear/tree/master/ethexe
https://discord.gg/BhhqF6f8u9
http://t.me/gear_tech
file:///Users/andreip/Gear%20workfiles%20(mega)/Gear.exe%20WP-pdf-html/hello@gear-tech.io

accessible via archive nodes.

Decoder Contract

An optional smart contract that translates data between Gear.exe and Ethereum. It encodes
input data for Gear programs and decodes their output into formats readable by Ethereum tools
like Etherscan.

dApp (Decentralized Application)

A software application that runs on a blockchain or decentralized network. dApps are powered
by smart contracts and provide users with transparent and trustless interactions without relying
on centralized servers.

Executor

A decentralized node within the Gear.exe network responsible for executing Wasm programs.
Executors retrieve programs, perform computations, and generate signed results, ensuring the
network’s reliability and scalability.

Finality

The point at which a transaction or computational result is considered immutable and
irreversible. On Ethereum, finality typically occurs after ~12.8 minutes, but Gear.exe enhances
this by providing pre-confirmation mechanisms for near-instant feedback.

Gear Protocol

The foundational framework behind Gear.exe that supports the creation and execution of Wasm
programs. It provides the tools and runtime environment necessary for decentralized
computation.

IDL (Interface Definition Language)

A file that describes the structure and interface of a Wasm program. Developers use IDL files to
define how their Gear programs interact with external systems or smart contracts.

Mirror Contract

A smart contract deployed on Ethereum to act as an interface for a Gear program. Mirror
Contracts enable communication between the Ethereum blockchain and off-chain computations
performed on Gear.exe.

Optimistic Rollups

A type of Layer-2 scaling solution that processes transactions off-chain and periodically posts
summarized data (state roots) back to the Ethereum mainnet. Optimistic Rollups operate under
the assumption that transactions are valid (“optimistically”) unless proven otherwise. To ensure
security, they include a challenge period during which anyone can submit fraud proofs to
contest invalid transactions. This mechanism provides scalability but introduces delays in
transaction finality due to the need for a dispute resolution window.

Pre-confirmation Mechanism

A feature in Gear.exe that provides computation results immediately after execution, even
before the associated transaction is finalized in an Ethereum block. This enables faster
feedback for latency-sensitive applications.

Reverse-Gas Model

An approach where developers cover transaction fees for end users, enabling dApps to deliver
a seamless user experience. This model is supported by Gear.exe, allowing dApp developers to
adopt monetization strategies similar to those used in Web2 applications.

Router Contract

The central smart contract in Gear.exe’s architecture that coordinates interactions between
Ethereum and the Gear.exe network. It handles program uploads, execution results, and state
transitions.

Sequencer

A component in Gear.exe that aggregates execution results from multiple Executors and
submits them to Ethereum as a single batch. The Sequencer ensures efficient synchronization
between off-chain computations and on-chain state updates.

Shared Storage

A blockchain or Layer-2 design feature where all participating nodes or entities share access to
a unified state, including data and smart contract storage. This approach ensures consistency
and transparency across the network but can limit scalability due to bottlenecks in data retrieval
and update operations. Shared storage is a hallmark of traditional blockchains like Ethereum
and many rollup solutions, where all transactions and state changes must be reflected across
the network. Gear.exe avoids shared storage, instead decentralizing computations and
managing state transitions dynamically through its architecture, enabling greater efficiency and
scalability.

Slashing

A mechanism that penalizes Executors for malicious behavior or poor performance by reducing
their staked collateral. This process ensures the economic accountability of Gear.exe
participants and maintains the network’s integrity.

Solidity

A high-level, object-oriented programming language specifically designed for writing smart
contracts on blockchain platforms like Ethereum. It allows developers to define and implement
the logic that powers decentralized applications (dApps).

Symbiotic Protocol

A decentralized restaking system used by Gear.exe to select and manage Executors. It
facilitates staking, distributes rewards, and enforces penalties, ensuring a secure and scalable
compute network.

Vaults

Intermediaries in the Symbiotic Protocol that manage the staking process for Executors. Vaults
handle deposits, withdrawals, and rewards, as well as enforce slashing policies.

Wasm (WebAssembly)

A high-performance, lightweight binary format for executing code. Gear.exe uses Wasm
programs to run decentralized computations efficiently and securely.

ZK Rollups (Zero-Knowledge Rollups)

A Layer-2 scaling solution that uses zero-knowledge proofs to validate transactions off-chain
and post verified summaries on-chain. ZK Rollups employ cryptographic proofs (such as zk-
SNARKs or zk-STARKs) to ensure the correctness of the batch without revealing the underlying
transaction data. This approach enhances scalability, reduces gas costs, and offers faster
finality compared to Optimistic Rollups, but at the cost of higher computational demands for
generating proofs.

